FORSCHUNGSBERICHT 2008 (2) PROF. DR.WOLFGANG MATTHES 1

The ReAl Computer Architecture

ReAl = Resource Algebra
Prof. Dr. Wolfgang Matthes, Fachbereich Informations- und Elektrotechnik

Abstract

The research effords are directed towards a hardware-software interface which can put into

effect a practically unlimited number of processing resources and which allows for

completely describing and exploiting the inherent parallelism of the application problems.

The proposed architectural principles may lead to:

* Instruction set architectures which can cope with a transfinite number of hardware
resources.

* Processing circuits containing resources of intermediate granularity and appropriately
optimized interconnects.

* Machines which do not waste clock cycles — and hence energy — for purposes which are
not related immediately to the computation of the desired final results (like fetching
instructions or pushing register contents and intermediate variables around).

Computer Architecture as an Algebra of Resources

The proposed architecture is based on a set or pool of resources which can execute certain
operations with data of certain types. This constitutes basically an algebraic structure. Hence
the name ReAl = Resource-Algebra. Similar paradigms have been used occasionally over
more than one decade for performance analysis and abstract modeling of architectural
principles ([1]). Here the basic idea will be applied to instruction set design.

The principal hypothesis: There will always be enough:

* Hardware does not matter.

* Memory Capacity does not matter.

» Hardware requirements for machine program generation do not matter.

The basic paradigm: When we want to do something, we will fetch an appropriate piece of
hardware out of a magazine (like a hammer to drive in a nail or a wrench to fasten a nut) and
use it to perform the information processing task to be executed. When we want to add two
numbers together, we take an adder, when we want to compare two values, we take a
comparator and so on. A piece of hardware which has done its duty will be returned to the
magazine. We will take as many tools as we need, e.g., 50 hammers if 50 nails are to be
driven in, or 50 adders if 50 pairs of numbers are to be added together.

An advanced architecture should permit to make use of the inherent parallelism. The RealL
approach is based on the idea to assume an infinite pool of resources. Of cause, each pool of
resources is limited in size. Hence the programs are to be adapted to the limits of a given pool
of resources. This can be done during compiling time or during run time.

FORSCHUNGSBERICHT 2008 (2) PROF. DR.WOLFGANG MATTHES 2

A complementing idea is the efficiency of implementation. When an application problem is
to be solved, intermediate variables, procedure calls and the like are essentially a waste of
clock cycles or machine bandwidth (and, in consequence, energy). Obviously, it would be
better to have the job being done (for example, the rendering of a graphics presentation) than
to push the EDX register onto the stack in order to get it free for multiplication and later to
fetch it back again (this is an example of an instruction sequence which contributes nothing
to solve the application problem, but is to be executed to compensate for architectural quirks).

The architecture is based on the following principles:

» There will be always enough resources. Above all this is a theoretical assumption
(hypothesis of a transfinite resource pool). Based on this assumption it is possible to
request an arbitrary number of resources in order to exploit the inherent parallelism up to
the utmost level. In practice however, each pool of resources is limited in size. Hence the
programs are to be adapted to the limits of a given pool of resources.

» With respect to an application problem, the universal computer is considered to be only
a makeshift solution. The true optimum solution would be a dedicated hardware whose
machine cycles are spent exclusively to compute the desired final results. In such a
machine, neither clock cycles and memory bandwidth nor power would be wasted for
fetching instructions, loading and storing intermediate values, function calls and the like.
ReAl machines should be true universal machines whose characteristics come as close to
this ideal as possible.

* The basic paradigm of a resource is a piece of hardware with input registers,
combinational circuitry and output registers.

» The instructions describe only the basic processing steps, but not the concrete operations
to be performed (e.g., addition or multiplication).

Inorder to implement a certain programming intention, appropriate resources will be selected
out of the resource pool. These resources will be fed with parameters. Then the processing
operations will be initiated. Results will be stored in memory or written to 1/O devices;
intermediate results will be forwarded to other resources. Further steps of parameter passing,
initiation and assignment will be executed until the processing task has been completed.
Resources which are no longer needed will be returned to the resource pool. These processing
steps are controlled by stored instructions. So-called platform resources are provided to fetch
the instructions from memory. Additional instructions establish concatenations between
resources and to disconnect such concatenations. Once a concatenation has been set up, the
steps of parameter passing, initiation of operations and assignment of results will be
performed automatically.

A processing resource in a ReAl machine is a functional unit — more than a logic block and
less than a complete processor. An arithmetic-logic unit (ALU) with some addressing, control,
and storage means may serve as a typical example. Compared to the operation units in
contemporary high-performance processors, the resources in ReAl machines are less complex.

FORSCHUNGSBERICHT 2008 (2) PROF. DR.WOLFGANG MATTHES 3

Resources should be able to work autonomously. The principal goal is to avoid information
transport and operation cycles which are not necessary. Therefore, instruction fetch cycles as
well as load and store cycles have to be avoided whenever possible. In an ideal machine, only
data related to the solution of the application problem would be fetched and stored. In a ReAl
machine, instructions will set up concatenations of resources which correspond to parts of the
dataflow graph of the application problem and leave the execution of operations and the
transport of intermediate data to the processing resources.

The first more detailed investigations have been aimed at demonstrating the feasibility of the
real approach by showing that the basic operators together with some simple resources can
emulate all the essential principles of the v.Neumann architecture.

Next steps to be taken:

» ReAl development will be a time-consuming process.

* The first implementations will be emulators.

» Toy-like implementations are worthless.

» Thefirstexperimental ReAl architecture implementation should be areasonable compiler
target.

» Hence the complexity will be comparable to the architectures of contemporary high-
performance processors (for example, Intel 1A-32 and 1A-64).

* Numerous details have to be taken into consideration. (Contemporary processors have 200
instructions and more.)

» A set of basic resources has to be defined in detail.

» The theory of operation has to be worked out and described in detail.

» All the primary evaluation work has to be done manually, as a number of iteration cycles
cannot be afforded (design a architecture — write a compiler— evaluate the work based on
real-world applications — improve the architecture and so on).

» The set of reference manuals will comprise more than 1000 pages.

» Algorithms for converting conventional programs into ReAl operator sequences have to
be developed.

References:

[1] Matthes, W.: Hardware Resources: a generalizing view on computer architectures. ACM
SIGARCH Computer Architecture News, Vol. 18 , Issue 2 (June 1990), pages 7-14.

[2] Matthes, W.: How many operation units are adequate? ACM SIGARCH Computer Architecture
News, Vol. 19, Issue 4 (June 1991), pages 94-108.

[3] ReAl Design Documentation. Pending patent applications: DE 10 2005021 749.4 and US
11/430,824. Internet: http://www.realcomputerarchitecture.de

[4] Matthes, W.: The ReAl Computer Architecture. Proceedings IDAACS 2007, pages 249-
254,

FORSCHUNGSBERICHT 2011 PROF. DR.WOLFGANG MATTHES 1

The ReAl Computer Architecture

ReAl = Resource Algebra
Prof. Dr. Wolfgang Matthes, Fachbereich Informations- und Elektrotechnik

Abstract

ReAl computer architecture replaces the conventional processor core — essentially an
autonomous state machine controlled by stored instructions — by ensembles of processing
resources. The ReAl API allows for completely describing and exploiting the inherent
parallelism of the application problems. To prove the principal feasibility, it has been shown
that the basic operators together with some simple resources can emulate all the essential
principles of the v.Neumann architecture. The approach has been vindicated further by
investigating fundamental problems of efficiency. First experimental results have been
obtained.

Computer Architecture as an Algebra of Resources

In a ReAl machine, the silicon real estate will be populated with a comparatively large
number of control and operation units, designated as resources ([2]...[6]). The processor cores
are decomposed into their functional units, which are put immediately under program control
(Fig. 1). A resource represents an intermediate granularity between a fully-fledged processor
and the logic cells of a FPGA. An arithmetic-logic unit (ALU) with some addressing, control,
and storage means may serve as a typical example. Detailed investigations seem to confirm
the advantages of a large number of comparatively simple resources instead of a smaller
number of more complex ones. Resources are connected via bus systems or switched point-to-
point interfaces (Fig. 1). Only some few topologies are of decisive importance ([1]), above
all independent processing units (for exploiting true parallelism) and the inverted binary tree
(for mapping nested expressions onto it). All other topologies could be emulated (virtualized).
Therefore, cost could be expected to be kept reasonably low. At afirst glance, block diagrams
of ReAl machines resemble massively parallel or cellular systems. The peculiar feature is the
application programming interface (API), which enables such configurations to execute
conventional programs. To extract and describe the inherent parallelism in statu nascendi —
in other words, immediately from the programmer’s intentions —, the ReAl API assumes the
pool of resources to be infinite.

Inorder to implement a certain programming intention, appropriate resources will be selected
out of the resource pool. These resources will be fed with parameters. Then the processing
operations will be initiated. Results will be stored in memory or written to 1/0O devices;
intermediate results will be forwarded to other resources. Further steps of parameter passing,
initiation and assignment will be executed until the processing task has been completed.
Resources which are no longer needed will be returned to the resource pool. These processing
steps are controlled by stored instructions. The instructions — operators in the ReAl

FORSCHUNGSBERICHT 2011 PROF. DR.WOLFGANG MATTHES 2

terminology — describe only the basic processing steps, but not the operations to be performed
(e.g., addition or multiplication). So-called platform resources are provided to fetch the
instructions from memory. Additional operators establish concatenations between resources
and to disconnect such concatenations. Once a concatenation has been set up, the steps of
parameter passing, initiation of operations and assignment of results will be performed
automatically.

Efficiency of Implementation

Each processor is basically a sequential state machine. It should do useful work. The task
proper of a machine is not executing instructions but delivering output bit patterns according
to input bit patterns. When an application problem is to be solved, intermediate variables,
procedure calls and the like are essentially a waste of clock cycles or machine bandwidth. To
quantitatively characterize architectures and machines, a performance metrics and a metrics
of implementation efficiency have been introduced ([5], [7])-

It has been found that this metrics can be used to evaluate efficiency problems of power
consumption, too. Today, the primary design constraint is not transistor count, but power
consumption. According to a strict power saving philosophy, the universal computer is to be
considered only a makeshift solution. With respect to an application problem, the true
optimum solution would be a dedicated machine whose cycles are spent exclusively to
compute the desired final results. In such a machine, neither clock cycles and memory
bandwidth nor power would be wasted for fetching instructions, loading and storing
intermediate values, calling functions and the like. ReAl machines should be true universal
machines whose characteristics come as close to this ideal as possible.

Experimental Results

Itis difficult to evaluate new architectural proposals against existing processors, because that
means to compare a fictitious machine to a fully-fledged high-performance processor. Thus,
it is impossible simply to measure the execution times. Instead, the program execution is to
be examined step by step.

An emulator program has been developed, which serves as a demonstration of feasibility as
well as an evaluation tool ([6]). Thus, it was possible to compare the new architectural
principles with conventional machines and programs and to obtain an approximate
quantitative assessment of effectiveness. A ReAl machine is compared to a program written
in C, translated by a state-of-the-art compiler and executed on the processor of a personal
computer.

Initial investigations have been based on Bresenham’s line drawing algorithm. Two programs
were written: the one conventionally with the C language, the other with the ReAl API of the
EmuRix emulator. The C program has been compiled using the Microsoft® Optimizing
Compiler Version 16.0. The assembler code has been evaluated manually and compared to
the statistics of the EmuRix code, generated by the emulator. The results are encouraging,

FORSCHUNGSBERICHT 2011 PROF. DR.WOLFGANG MATTHES 3

showing an increase in performance between 20 and 50 % even for emulation on conventional
machines (Fig. 3). It should be noted that emulation is not only a means for evaluation and
comparison, but a viable technology for implementing the concept of bytecode, which can be
executed everywhere (cf. the virtual machines JVM and Dalvik).

a) Conventional storage hierarchy b) Basic storage model of a ReAl machine
System memory System memory
(virtual memory) (virtual memory)
[RG] [RG] [RG] [Re]
Caches

General purpose register file

ol
@

RG

i)

G] [RG | [RG] [RG |

k]
@
I
@

Hardware registers within the processing units

|RG | [RG |
|RG | [RG | [RrRG] [RG |

Fig. 1. Storage hierarchies compared. Because the intermediate variables reside within the
processing resources, most of the transport operations are omitted.

a) System Bus

= L L

-Processing Resources -

b)

e
i

Fig. 2. Typical ReAl machines. 1 - resource cell; 2 - switching hub; 3 - point-to-point-
interface.

FORSCHUNGSBERICHT 2011 PROF. DR.WOLFGANG MATTHES 4

60.00%

50.00%

40.00%

30.00%

Performance Gain

20.00% -

10.00%

0.00% . . -

0 10 20 30 40 50
Loops Passed

Fig. 3. A summary result of experimental investigations ([6]). After 50 loop cycles, the
performance of the ReAl machine surpasses an x86 family processor by approximately 50%.

References:

[1] Matthes, W.: How many operation units are adequate? ACM SIGARCH Computer
Architecture News, Vol. 19, Issue 4 (June 1991), pages 94-108.

[2] ReAl Design Documentation. Patent applications: DE 10 2005 021 749.4 and US
11/430,824. Internet: http://www.realcomputerarchitecture.de

[3] Matthes, W.: The ReAl Computer Architecture. Proceedings IDAACS 2007, pages 249-
254.

[4] Matthes, W.: Ressourcen statt Prozessorkerne? NTZ 7/8 2009, pages 12 — 16.

[5] Matthes, W.: Resources instead of Cores? ACM Sigarch Computer Architecture News,
Volume 38, Number 2, May 2010, pages 49 — 63.

[6] Kuczkowicz, L.: Verfahren zur Emulation von Hochleistungsrechnern. Bachelor Thesis,
Fachhochschule Dortmund, 2011.

[7] Matthes, W.: Hardware und Software. Embedded Electronics, Band 3. Elektor, 2011.

